To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Estelación final del icosaedro

De Wikipedia, la enciclopedia libre

Estelación final del icosaedro

Dos proyecciones ortogonales simétricas
Grupo de simetría Icosaédrico (Ih)
Tipo Nº 8 de 59 (según la obra The fifty nine icosahedra)
Símbolos Du Val: H
Magnus Wenninger: W42
Elementos
(Como un poliedro estrellado)
F= 20, E= 90
V= 60 (χ= −10)
Elementos
(Como un poliedro simple)
F= 180, E= 270,
V= 92 (χ= 2)
Propiedades
(Como un poliedro estrellado)
Figura isogonal e isoedral
Diagrama de estelación Núcleo de estelación Envolvente convexa

Icosaedro

Icosaedro truncado

En geometría, la estelación final del icosaedro (también denominada estelación completa del icosaedro)[1][2]​ es la estelación más externa posible del icosaedro, y se dice que es final y completa porque incluye todas las celdas del diagrama de estelación del icosaedro. Expresado de otra manera, cada tres planos de las caras que se cruzan en el núcleo icosaédrico se cruzan en un vértice de este poliedro o dentro de él.

Este poliedro es la decimoséptima estelación del icosaedro, y como tal figura entre los modelos de poliedros de Wenninger, quien le asignó el número 42.

Como figura geométrica, tiene dos interpretaciones, que se describen a continuación:

  • Como un poliedro estrellado autointersecante irregular, con 20 caras eneagrámicas autointersecantes idénticas, 90 aristas y 60 vértices.
  • Como un poliedro simple con 180 caras triangulares (60 isósceles y 120 escalenas), 270 aristas y 92 vértices. Esta interpretación es útil para la construcción del correspondiente modelo poliédrico.

Johannes Kepler investigó en 1619 las estelaciones que generan poliedros regulares (los poliedros de Kepler-Poinsot), pero la estelación completa del icosaedro, con caras irregulares, fue estudiada por primera vez en 1900 por Max Brückner.

Historia


Modelo de Brückner
(Taf. XI, Fig. 14, 1900)(Brückner, 1900)

Un equidna

Interpretaciones

Diagrama de estelación del icosaedro con las celdas numeradas. La estelación completa del icosaedro está formada por todas las celdas del diagrama, pero solo son visibles las regiones más externas, etiquetadas como "13"
Modelo 3D de la estelación final del icosaedro

Como una estelación

La estelación de un poliedro extiende sus caras en planos infinitos, y genera un nuevo poliedro que está delimitado por estos planos como caras y las intersecciones de estos planos como aristas. En la obra The Fifty Nine Icosahedra se enumeran las estelaciones del icosaedro regular, de acuerdo con un conjunto de reglas ideadas por J. C. P. Miller, incluida la estelación completa. El símbolo de Du Val de la estelación completa es H, porque incluye todas las celdas del diagrama de la estelación hasta la capa "h" más externa.(Cromwell, 1997, p. 259)

Como un poliedro simple

El modelo poliédrico se puede construir con 12 conjuntos de caras como este, cada uno doblado para formar un grupo de cinco pirámides de tres caras cada una

Como poliedro de superficie visible simple, la forma exterior de la estelación final se compone de 180 caras triangulares, que son las regiones triangulares más externas en el diagrama de la estelación. Estas caras se unen en 270 aristas, que a su vez se encuentran en 92 vértices, con una característica de Euler de 2.[5]

Los 92 vértices se encuentran en las superficies de tres esferas concéntricas. El grupo más interno de 20 vértices están distribuidos como los vértices de un dodecaedro regular; la siguiente capa de 12 vértice conforma los vértices de un icosaedro regular; y la capa exterior de los 60 vértices restantes toman la forma de los vértices de un icosaedro truncado no uniforme. Los radios de estas esferas guardan las razones siguientes:[6]

Envolventes convexas de cada esfera de vértices
Interna Media Exterior Las tres
20 vértices 12 vértices 60 vértices 92 vértices

Dodecaedro

Icosaedro

Icosaedro truncado
no uniforme

Icosaedro completo

Cuando se considera como un objeto sólido tridimensional con longitudes de arista , , y (donde es el número áureo), el icosaedro completo tiene una superficie de:[6]

y un volumen de:[6]

Como un poliedro estrellado

Veinte caras poligonales eneagrámicas 9/4 (una de las caras figura dibujada en amarillo, con sus 9 vértices marcados)
Caras eneagrámicas 9/4 (2-isogonales)

La estelación completa también se puede ver como un poliedro estrellado autointersecado que tiene 20 caras correspondientes a las 20 caras del icosaedro subyacente. Cada cara es una estrella irregular 9/4 (es decir, un eneagrama de 9 vértices conectados por diagonales cada 4 vértices).(Cromwell, 1997, p. 259) Dado que tres caras se encuentran en cada vértice, tiene 20 × 9 / 3 = 60 vértices (estas son la capa más externa de vértices visibles y forman las puntas de las "espinas") y 20 &times ; 9 / 2 = 90 aristas (cada arista del poliedro estrella incluye y conecta dos de las 180 aristas visibles).

Cuando se considera como una estrella icosaédrica, la estelación completa es un poliedro noble, porque es tanto isoédrica (cara-transitiva) como isogonal (vértice-transitiva).

Véase también

Referencias

  1. Coxeter et al., 1999, p. 30, 31.
  2. Wenninger, 1971, p. 65.
  3. Weisstein, Eric W. «Kepler-Poinsot Solid». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. 
  4. The name echidnahedron may be credited to Andrew Hume, developer of the netlib polyhedron database:
    "... and some odd solids including the echidnahedron (my name; its actually the final stellation of the icosahedron)." geometry.research; "polyhedra database"; August 30, 1995, 12:00 am.
  5. Echidnahedron Archivado el 7 de octubre de 2008 en Wayback Machine. at polyhedra.org
  6. a b c Weisstein, Eric W. «Echidnahedron». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. 

Bibliografía

Enlaces externos

Estelaciones notables del icosaedro
Regulares Duales uniformes Compuestos regulares Estrella regular Otros
Icosaedro (convexo) Pequeño icosaedro triámbico Mediano icosaedro triámbico Gran icosaedro triámbico Compuesto de cinco octaedros Compuesto de cinco tetraedros Compuesto de diez tetraedros Gran icosaedro Dodecaedro excavado Estelación final
El proceso de estelación en el icosaedro crea una serie de poliedros y compuestos relacionados con simetría icosaédrica
Esta página se editó por última vez el 27 sep 2023 a las 23:52.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.