To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Método Schulze

De Wikipedia, la enciclopedia libre

El método Schulze es un sistema de votación desarrollado en 1997 por Markus Schulze que selecciona a un ganador a partir de las preferencias de los votantes. El método también puede usarse para crear una lista de ganadores.

Descripción del método

El método Schulze consiste en:

  1. Averiguar el conjunto de Schwartz (el menor conjunto de candidatos que no es ganado por nadie fuera del conjunto). Si solo hay un candidato en el conjunto, este es el ganador de Condorcet. Si hay varios miembros pero no hay derrotas entre ellos, entonces hay un empate normal entre ellos.
  2. En cualquier otro caso, eliminar la derrota más suave en el conjunto de Schwartz (es decir, aquella ganada por el menor margen). Recalcular el nuevo conjunto de Schwartz y repetir el proceso.

Ejemplo 1

Ejemplo (45 votantes; 5 candidatos):

5 ACBED (es decir, cinco votantes eligieron el siguiente orden de preferencia: A > C > B > E > D)
5 ADECB
8 BEDAC
3 CABED
7 CAEBD
2 CBADE
7 DCEBA
8 EBADC

Luego, se lleva a cabo las confrontaciones entre pares (método Condorcet); por ejemplo, al comparar A y B, hay 5 + 5 + 3 + 7 = 20 votantes que prefieren A sobre B, y 8 + 2 + 7 + 8 = 25 votantes que prefieren B sobre A. Así d[A, B] = 20 y d[B, A] = 25. El conjunto completo es:

d[*,A] d[*,B] d[*,C] d[*,D] d[*,E]
d[A,*] 20 26 30 22
d[B,*] 25 16 33 18
d[C,*] 19 29 17 24
d[D,*] 15 12 28 14
d[E,*] 23 27 21 31
Matriz de duelos entre candidatos

Para cada par de candidatos X e Y, la siguiente tabla muestra la ruta más fuerte desde el candidato X al candidato Y en red, con el más débil subrayado.

  ... a A ... a B ... a C ... a D ... a E
de A ...
A-(30)-D-(28)-C-(29)-B
A-(30)-D-(28)-C
A-(30)-D
A-(30)-D-(28)-C-(24)-E
de B ...
B-(25)-A
B-(33)-D-(28)-C
B-(33)-D
B-(33)-D-(28)-C-(24)-E
de C ...
C-(29)-B-(25)-A
C-(29)-B
C-(29)-B-(33)-D
C-(24)-E
de D ...
D-(28)-C-(29)-B-(25)-A
D-(28)-C-(29)-B
D-(28)-C
D-(28)-C-(24)-E
de E ...
E-(31)-D-(28)-C-(29)-B-(25)-A
E-(31)-D-(28)-C-(29)-B
E-(31)-D-(28)-C
E-(31)-D
Rutas más fuertes
p[*,A] p[*,B] p[*,C] p[*,D] p[*,E]
p[A,*] 28 28 30 24
p[B,*] 25 28 33 24
p[C,*] 25 29 29 24
p[D,*] 25 28 28 24
p[E,*] 25 28 28 31
Robustez de las rutas más fuertes

Con esta matriz es posible determinar el resultado por el método Schulze. Por ejemplo, al comparar A y B, ya que 28 = p [A, B]> p [B, A] = 25, el candidato A es mejor que el candidato B. Otro ejemplo es que 31 = p [E, D]> p [D, E] = 24, por lo que el candidato E es mejor que el candidato D. Si se continúa de esta manera, el resultado es que el ranking Schulze es E > A> C> B> D; en consecuencia, E gana. En otras palabras, E es un ganador potencial porque p[E,X] ≥ p[X,E] para cualquier otro candidato X.

Enlaces externos

Esta página se editó por última vez el 27 ene 2024 a las 22:59.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.