To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Maniobra orbital

De Wikipedia, la enciclopedia libre

Transferencia bielíptica, un tipo de maniobra orbital.

En un vuelo espacial, una maniobra orbital es el uso de sistemas de propulsión para cambiar la órbita de una nave espacial. Para las naves alejadas de la Tierra (por ejemplo las órbitas alrededor del Sol) una maniobra orbital es denominada maniobra de espacio profundo (DSM, Deep-Space Maneuver).

YouTube Encyclopedic

  • 1/3
    Views:
    112 355
    86 934
    784
  • La época de la NASA [1/4] Programas Mercury y Gemini.
  • Un recorrido por toda la estacion espacial internacional
  • Logro cósmico de la humanidad

Transcription

Maniobras impulsivas

Una "maniobra impulsiva" es una maniobra que consiste en un único y casi instantáneo cambio en la velocidad de la nave espacial. Como incluso una nave espacial pequeña tiene masa, no puede cambiar instantáneamente de velocidad. Durante la fase de planificación de la mayoría de misiones, los diseñadores primero aproximan sus cambios orbitales previstos usando maniobras impulsivas. Esto reduce enormemente la complejidad de encontrar la transición orbital correcta. A los cambios instantáneos de velocidad se los conoce como delta-v (), el delta-v total para todas las maniobras requeridas en una misión se denomina "equilibrio de delta-v". Con una buena aproximación al equilibrio de delta-v los diseñadores pueden estimar la cantidad de propelente necesario para la carga útil de la nave espacial. Usar estas aproximaciones es más útil cuando se ejecuta un empuje finito en ráfagas cortas. Maniobras finitas como esas son posibles con sistemas de propulsión con una alta relación empuje/peso, p.ej. cohetes químicos. Sin embargo, incluso durante largos periodos de quemado, las aproximaciones de maniobras impulsivas siguen siendo muy exactas lejos de la atmósfera terrestre.

Maniobras no impulsivas

Aplicar un empuje débil con períodos de tiempo más largos es conocido como maniobra no impulsiva (aunque en realidad cualquier empuje produce cierta cantidad de impulso). Son menos eficientes ya que se pueden perder grandes cantidades de energía debido al efecto Oberth y a otras ineficiencias. Sin embargo esas maniobras pueden ser la única opción cuando son aconsejables lanzamientos de poco peso y por lo tanto se usan sistemas de propulsión con un impulso específico alto pero baja relación empuje/peso (p.ej. motores iónicos), los cuales no son útiles para el despegue.

Trayectorias de quemado finito

Para unas pocas misiones espaciales, tales como aquellas que incluyen un rendezvous espacial, se necesitan modelos de alta fidelidad de las trayectorias para reunir los objetivos de la misión. Calcular un quemado finito requiere un modelo detallado de la nave espacial y de sus propulsores. Los detalles más importantes incluyen: la masa, el centro de masa, el momento de inercia, la posición de los propulsores, los vectores de empuje, las curvas de empuje, el impulso específico, la desviación de centroide de empuje y el consumo de combustible.

Véase también

Referencias

Enlaces externos

Esta página se editó por última vez el 5 feb 2022 a las 18:12.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.