To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Oscilador de van der Pol

De Wikipedia, la enciclopedia libre

Plano de fases de un oscilador de van der Pol no forzado.
Evolución del ciclo límite en el plano de fase.

En sistemas dinámicos, el oscilador de van der Pol es un oscilador con amortiguamiento no lineal. Su evolución temporal obedece a una ecuación diferencial de segundo orden:

en la que x es la posición, función del tiempo t, y μ es un parámetro escalar que gobierna la no linealidad y el amortiguamiento.

YouTube Encyclopedic

  • 1/1
    Views:
    4 704
  • Euler's Method: Van der Pol Oscillator

Transcription

Historia

El oscilador de van der Pol fue descrito por el ingeniero y físico Balthasar van der Pol mientras trabajaba en Philips.[1]​ Van der Pol encontró oscilaciones estables, que llamó oscilaciones de relajación,[2]​ conocidas en la actualidad como ciclos límite, en circuitos que usaban válvulas de vacío. Cuando esos circuitos se hacen funcionar cerca del ciclo límite entran en acoplamiento y la señal entra en fase con la corriente. Van der Pol y su colega, van der Mark, informaron en el número de septiembre de 1927 de Nature[3]​ que para determinadas frecuencias aparecía un ruido irregular, siempre cerca de las frecuencias de acoplamiento. Fue uno de los primeros descubrimientos experimentales de la Teoría del caos.[4]

La ecuación de van der Pol tiene una larga historia en física y biología. Por ejemplo, en biología, Fitzhugh[5]​ y Nagumo[6]​ aplicaron la ecuación a un campo bidimensional en el modelo de FitzHugh-Nagumo para describir el potencial de acción de las neuronas. También se ha usado en sismología para modelar el comportamiento de dos placas en una falla.[7]

Forma bidimensional

El teorema de Liénard prueba que el sistema tiene un ciclo límite. Aplicando la transformación de Liénard , donde el '.' indica derivada, la ecuación se puede escribir en forma bidimensional:[8]

Resultados del oscilador no forzado

Oscilador de van der Pol sin excitación externa. El parámetro de amortiguamiento no lineal es μ = 5.

Hay dos regímenes de funcionamiento interesantes para el oscilador no forzado:[9]

  • Cuando μ = 0, no hay amortiguamiento, y la ecuación queda:
Es la fórmula del oscilador armónico simple sin pérdida de energía.
  • Cuando μ > 0, el sistema alcanzará un ciclo límite, en el que se conservará la energía. Cerca del origen x = dx/dt = 0 el sistema es inestable, y lejos del origen hay amortiguamiento.

El oscilador de van der Pol forzado

Comportamiento caótico en el oscilador de van der Pol con excitación sinusoidal. μ = 8.53, mientras que la excitación externa tiene amplitud A = 1.2 y frecuencia angular ω = 2π / 10.

Utilizando una fuente de excitación sinusoidal Asin(ωt) la ecuación diferencial queda:

en la que A es la amplitud de la ecuación de onda y ω su velocidad angular.

Referencias

  1. Cartwright, M.L., "Balthazar van der Pol", <i>J. London Math. Soc.</i>, 35, 367-376, (1960).
  2. Van der Pol, B., "On relaxation-oscillations", The London, Edinburgh and Dublin Phil. Mag. & J. of Sci., 2(7), 978-992 (1927).
  3. Van der Pol, B. and Van der Mark, J., “Frequency demultiplication”, Nature, 120, 363-364, (1927).
  4. Kanamaru, T., "Van der Pol oscillator", Scholarpedia, 2(1), 2202, (2007).
  5. FitzHugh, R., “Impulses and physiological states in theoretical models of nerve membranes”, Biophysics J, 1, 445-466, (1961).
  6. Nagumo, J., Arimoto, S. and Yoshizawa, S. "An active pulse transmission line simulating nerve axon", Proc. IRE, 50, 2061-2070, (1962).
  7. Cartwright, J., Eguiluz, V., Hernandez-Garcia, E. and Piro, O., "Dynamics of elastic excitable media", <i>Internat. J. Bifur. Chaos Appl. Sci. Engrg.</i>, 9, 2197–2202, (1999).
  8. Kaplan, D. and Glass, L., Understanding Nonlinear Dynamics, Springer, 240-244, (1995).
  9. Grimshaw, R., Nonlinear ordinary differential equations, CRC Press, 153–163, (1993), ISBN 0-8493-8607-1.

Enlaces externos

Esta página se editó por última vez el 22 ene 2023 a las 22:04.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.